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A new type of long-lived NMR echo in solids with homogeneously broadened dipolar spectra is discussed.
The echo can be generated by a simple two-pulse Hahn sequence in solid samples, where dipolar-coupled
nuclei have different chemical shifts. We present general considerations and simple theoretical models
which explain some features of this phenomenon.
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1. Introduction

It has been known that, for homogeneously broadened dipolar
NMR spectra of solids, weak and long pulses can excite sharp re-
sponse signals, which are orders of magnitude narrower than the
conventional spectra [1–3]. So far, the attempts of explaining this
phenomenon have not been very successful. Very recently, it has
been found that the underlying mechanism is a new type of
long-lived echo, based on broken symmetry [4]. Whenever a single
long pulse can produce long free-induction decay (FID) signal,
there also exists a long-lived echo, generated by the two-pulse
Hahn sequence [5]. This long-lived echo can be found in all homo-
nuclear samples with non-equivalent nuclei (different chemical
shifts) coupled by dipole–dipole interactions, as well as in hetero-
nuclear systems. Why this type of long-lived echo, observed in a
simple two-pulse experiment, waited so long to be discovered?
Probably, each time when such small-amplitude echoes have been
observed in experiments, they were misinterpreted as coming
from ‘‘liquid’’-phase contamination. However, many features of
the new echo are inconsistent with an explanation by a presence
of inhomogeneously broadened signal from ‘‘liquid’’. Besides that,
for inhomogeneous broadening, dephasing/refocusing of individual
spectral components of magnetization takes place in the x–y plane
of the rotating frame. For the echo we discuss, dephasing/refocus-
ing occurs is a more complex space of many-spin operators. This
difference can be easily verified in experiments.

The purpose of this paper is to supplement Ref. [4] by providing
more explanations, theoretical considerations, and model calcula-
tions. In the next section we derive expressions for the signal ex-
cited by a soft pulse followed by a hard refocusing pulse.
Compared to Ref. [4], the calculation is done in a more explicit
ll rights reserved.
and general way, and the result is obtained in a simpler form. Sec-
tion 3 contains exact calculations for the three-level model, intro-
duced in [4]. We also present some additional qualitative
considerations related to the echo amplitude, decay rate, shape,
and the role of molecular motions.

Even though not all characteristics of the long-lived echo are
well understood at this moment, we feel that the discussion below
may be useful. The new type of long-lived NMR echo in solids is a
manifestation of complex collective many-spin dynamics. There-
fore, explicit models, like the three-level model in Section 3, will
be necessarily oversimplified and capable of grasping only few fea-
tures of the real spin dynamics.

2. Selective echo

We will start by explaining why a soft selective pulse cannot
produce slowly decaying magnetization unless there also exists a
long-lived echo, excited by a sequence of two hard pulses. In this
section, we consider the signal generated by a sequence of a soft
(weak and long) y-pulse with the amplitude f(t), followed by a hard
refocusing pulse. For simplicity, the soft pulse will be symmetric:
f(t) = f(�t), and it will be also assumed that the total flip angle of
the soft pulse is small: u ¼

R T
�T dt f(t)� 1, where 2T is the pulse

duration.
In the first part of this section we reproduce some calculations

in Ref. [4] in order to introduce more convenient notations, and
also to show the calculations and results in a more explicit way.
Suppose that a spin system evolves under the time-independent
Hamiltonian H, and both the initial density matrix q(0) and the
observable are SX. Then x-component of magnetization M(t), or
the free-induction decay (FID) signal, is

MðtÞ ¼ hSX jqðtÞi ¼ hSX jSXðtÞi; where jSXðtÞi ¼ expðLHtÞjSXi: ð1Þ
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Here LH = �i[H, . . .] is the Liouvillian, the binary product for the two
operators A and B is defined as hA|Bi = Tr(A+B), and A+ is the Hermi-
tian conjugate of A. We will also use normalization hSX|SXi = 1, so
that the FID signal in Eq. (1) is normalized. It is convenient to intro-
duce the spectral components |xi of the operator |SX(t)i as

jxi ¼
Z

dt expð�ixtÞjSXðtÞi; jSXðtÞi ¼
Z

dx expðixtÞjxi: ð2Þ

Here and below the integration symbol without limits means inte-
gration between �1 and 1.

Now let us assume that the equilibrium density matrix is SZ and
the signal is created by a soft y-pulse with the amplitude f(t) and
small total flip angle. The linear-response density matrix created
by the pulse at time t = T is

jqðTÞi ¼
Z

dx
Z T

�T
dtf ðtÞ expðixðT � tÞÞjxi; ð3Þ

i.e. each spectral component of the linear response, created at
time t with the rate f(t), has evolved during time T–t after its
creation. Since f(t) = 0 at |t| > T, the integration limits in (3) can be
omitted:

jqðTÞi ¼
Z

dx expðixTÞ
Z

dtf ðtÞ expð�ixtÞjxi

¼
Z

dx expðixTÞf ðxÞjxi; ð4Þ

where f(x) is the Fourier transform of f(t). The phase factors in Eq.
(4) are the same as resulting from d-excitation at t = 0 (compare to
Eq. (2)), but the excitation profile is ‘‘tailored’’ by the function f(x).
It is easy to see that, without the refocusing pulse at t = T, the signal
is zero at t > T if the spectral width of f(x) is much narrower than
that of the conventional spectrum:

Mðt > TÞ ¼ hSX jqðtÞi ¼
Z

dx1dxexpðixtÞf ðxÞhx1jxi

¼
Z

dxI0ðxÞ expðixtÞf ðxÞ � I0ð0Þ
Z

dx expðixtÞf ðxÞ

¼ I0ð0Þf ðtÞ ¼ 0: ð5Þ

Here the projector hx1|xi = d(x1 �x) I0(x1) can be calculated
directly from Eqs. (1) and (2), and I0(x) is the conventional line
shape.

Let us suppose that after the soft excitation pulse, at the moment
t = T, the Hamiltonian changes from H to H0, and the subsequent
evolution happens with the Hamiltonian H0. Similar to the spectral
components |xi, we can introduce the operator S0X and its spectral
components |x0i for the Hamiltonian H0. Magnetization at time
t > T is contributed only by the operators |x0i. Projection of the den-
sity matrix on this subspace at t = T can be represented as

jq0ðTÞi ¼
Z

dx00aðx00; TÞjx00i; ð6Þ

where a(x00,T) are numerical coefficients. The coefficients a(x00,T)
can be calculated from equal projections of |qi and |q0i on the sub-
space |x0i:

hx0jqðTÞi ¼ hx0jq0ðTÞi ¼
Z

dx00aðx00; TÞhx0jx00i

¼
Z

dx00dðx0 �x00ÞI00ðx0Þaðx00; TÞ ¼ I00ðx0Þaðx0; TÞ: ð7Þ

Therefore, the coefficients are

aðx0; TÞ ¼ hx0jqðTÞiðI00ðx0ÞÞ
�1
: ð8Þ

By inserting the density matrix |q(T)i from Eq. (4) into Eq. (8),
and using Eq. (6), one can now calculate the signal at t > T:
Mðt > TÞ ¼
Z

dx0dx00hx00j expðix0ðt � TÞÞaðx0; TÞjx0i

¼
Z

dx0dx00hx00j expðix0ðt � TÞÞjx0ihx0jqðTÞiðI00ðx0ÞÞ
�1

¼
Z

dx0dx00hx00j expðix0ðt � TÞÞjx0ihx0j

�
Z

dx expðixTÞf ðxÞjxiðI00ðx0ÞÞ
�1

¼
Z

dxdx0 expðix0ðt � TÞÞ expðixTÞf ðxÞhx0jxi: ð9Þ

In Eqs. (7)–(9) we used for the ‘‘new’’ operators hx00jx0i ¼
dðx00 �x0ÞI00ðx00Þ, where I00ðxÞ is the conventional line shape with
the Hamiltonian H0. The projections hx0|xi of ‘‘new’’ operators on
‘‘old’’ operators in Eq. (9) can be calculated by using their definition
in Eqs. (2) and (1):

hx0jxi ¼
Z

ds0ds expðix0s0Þ expð�ixsÞhS0Xðs0ÞjSXðsÞi; ð10Þ

where the time dependence of jS0XðsÞi is defined by the Hamiltonian
H0. Since the operators |exp(LHt) SXi in Eq. (1) are Hermitian, the trans-
formation from ‘‘ket’’ to ‘‘bra’’ operators requires only a complex
conjugation for the phase factors exp(�ixt). Then, by substituting
Eq. (10) into Eq. (9) and integrating over x and x0, one obtains

Mðt > TÞ ¼
Z

dx0dx expðix0ðt � TÞÞ expðixTÞf ðxÞ

�
Z

ds0ds expðix0s0Þ expð�ixsÞhS0Xðs0ÞjSXðsÞi

¼
Z

ds0dsdðs0 þ t � TÞf ðT � sÞhS0Xðs0ÞjSXðsÞi

¼
Z

dsf ðT � sÞhS0XðT � tÞjSXðsÞi: ð11Þ

This simple equation in time domain could be written directly
by using the same reasoning as we did to introduce Eq. (3). The
purpose of switching to frequency domain and then back to time
domain was to learn several things on the way. First, a long weak
pulse selects spectral components with arbitrarily narrow spectral
range (Eq. (4)), and the created long-lived state is far from equilib-
rium. Second, the spectral components are perfectly dephased (Eq.
(5)) and, therefore, no linear response signal can be observed. This
is true for arbitrary pulse shape and the system’s Hamiltonian
(including also the systems with inhomogeneous broadening).
Third, sudden change of the Hamiltonian does not do any magic
in refocusing these spectral components unless there exists an
echo for a sequence of two hard pulses (see below).

There are two simple cases of Eq. (11):

(1) H0 = H. In this case hS0XðT � tÞjSXðsÞi ¼ M0ðT � t � sÞ ¼
M0ðt � T þ sÞ, and Eq. (11) becomes
Mðt > TÞ ¼
Z

dsf ðT � sÞM0ðt � T þ sÞ � I0ð0Þf ðtÞ ¼ 0: ð12Þ

Eq. (12) is an expected summation of free induction signals, cre-
ated at earlier moments of time. There is no echo signal.

(2) H0 = �H. In this case hS0XðT � tÞjSXðsÞi ¼ M0ð�T þ t � sÞ, and
Eq. (11) becomes
Mðt > TÞ ¼
Z

dsf ðT � sÞM0ð�T þ t � sÞ � I0ð0Þf ð2T � tÞ; ð13Þ

describing an ideally refocused echo at T < t < 3T, which replicates
the (time-reversed) excitation profile f(t).

In general, Eq. (11) shows that a long-lived echo, centered at
t = 2T, can exist only when the correlator hS0XðT � tÞjSXðsÞi has a
long-lived component at t = T + s:
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hS0Xð�sÞjSXðsÞi ¼ hexpð�LH0sÞSX j expðLHsÞSXi
¼ hSX j expðLH0sÞ expðLHsÞSXi: ð14Þ

Eq. (14) is exactly the echo amplitude at t = 2s for non-selective
excitation, when the signal is created at t = 0, and the refocusing
pulse is applied at t = s. Therefore, the soft excitation itself does
not help producing a long-lived signal unless there exists a ‘‘regu-
lar’’ long-lived echo for d-excitation. Then, for soft excitation, the
signal created at any moment of time is converted into the echo
signal by the propagator in Eq. (14), as it is shown in Fig. 1. Now
we can also understand how a single soft pulse with large total flip
angle can produce a long-lived signal in a non-linear way (as we
explained above, the linear-response signal is zero). The first part
of the pulse excites spectral components, while the rest of the
pulse acts as a refocusing y-pulse, producing a negative signal. Of
course, the excitation with the two-pulse sequence in Fig. 1 is
much more efficient.

For H0 = �H, Eq. (11) describes the echo with complete signal
refocusing, and it predicts no echo for H0 = H. Change of sign of
the Hamiltonian (time reversal) can be experimentally realized
only for systems with very simple dynamics. The example is the
Hahn echo [5] in systems with inhomogeneous spectra. For dipo-
lar-broadened homogeneous spectra, an approximate change of
sign can be achieved by using effective Hamiltonians, like in the
‘‘magic echo’’ experiment [6,7]. In practice, the decay time of the
‘‘magic echo’’ can be made an order of magnitude longer than
FID. While for coupled many-body systems accurate reversal of a
sign of the entire Hamiltonian is a very challenging experimental
task, it is much easier to reverse a sign of its part having a simpler
structure. Surprisingly, this may create a partial echo, which lives
orders of magnitude longer than the ‘‘mixing time’’ of the main
Hamiltonian [4].

We will consider the case when H0 is close to H, but not equal,
and change the notations as H ? H + D and H0 ? H � D, where D
is small, compared to H, and does not commute with H. The case
[H,D] = 0 is not interesting because

expðLHsÞ expðL�DsÞ expðLHsÞ expðLDsÞ ¼ expðLHsÞ expðLHsÞ
¼ expðLH2sÞ; ð15Þ

i.e. the evolution by D simply cancels. Even though D is small, it is
hard to explain the mechanism of the echo by using a perturbation
scheme. The reason is that the partial echo of small amplitude is
contributed by a small fraction of pairs of states, for which matrix
elements of H and D are comparable. In the next section, we will
introduce a simple three-level model, which can capture some fea-
tures of the real dynamics. To be more specific, as in Ref. [4], we as-
sume that H is the Hamiltonian of dipole–dipole interactions and D
is the difference of chemical shifts in the context of solid-state NMR.
The pulse sequence implementing this dynamics is the two-pulse
Hahn echo sequence [5], which changes the sign of D, but does
not change the Hamiltonian of dipole–dipole interactions. We will
be interested in describing the echo amplitude, decay time, and
width.
0 T 2T t 

πf(t) 
echo 

Fig. 1. The echo formed by soft excitation and hard refocusing pulse.
3. Non-selective echo: A three-level model

The smallest number of energy levels, needed to describe the
dipolar splitting, is three. At the same time, the three-level model
can incorporate the non-commuting operator D, which connects
the levels with Dm = 0 (m is the magnetic quantum number), and
two single-quantum transitions with Dm = ±1, as follows [4]:

H þ D ¼
xd D 0
D �xd 0
0 0 0

0
B@

1
CA; SX ¼

0 0 1
0 0 1
1 1 0

0
B@

1
CA; ð16Þ

A distribution of dipolar frequencies xd will model a ‘‘pure’’
dipolar line shape, without contribution from chemical shift differ-
ence. D represents the magnitude of the chemical shift difference.
For the Hahn sequence (p/2)Y � s � pX, SX evolves with the Hamil-
tonian H + D during the time s, then, at t = s, D changes the sign.

3.1. The echo amplitude

The problem is solved by diagonalization of the Hamiltonians
H + D and H � D:

U

xd D 0
D �xd 0
0 0 0

0
B@

1
CAU�1 ¼

k 0 0
0 �k 0
0 0 0

0
B@

1
CA ¼ D;

U ¼
cos u=2 sin u=2 0
� sinu=2 cos u=2 0

0 0 1

0
B@

1
CA; ð17Þ

tanu = D/xd, and k ¼ ðx2
d þ D2Þ1=2. H � D is diagonalized by

replacing U by U�1, and has the same diagonal form. The signal,
x-magnetization, at t = 2s can be written as

Mð2sÞ¼ TrðUeiDsU�1SX Ue�iDsU�1ÞðU�1e�iDsUSX U�1eiDsUÞ=TrðS2
X Þ

¼ ðTrðS2
X ÞÞ
�1Tr

0 0 cðcþ sÞ/� � sðc� sÞ/þ

0 0 sðcþ sÞ/� þcðc� sÞ/þ

cðcþ sÞ/þ � sðc� sÞ/� sðcþ sÞ/þ þcðc� sÞ/� 0

0
B@

1
CA

8><
>:

�
s!�s

/þ !/�

/� !/þ

0
B@

1
CA
9>=
>;; ð18Þ

where c = cos u/2, s = sinu/2, /± = exp(±iks), and the second matrix
on the last line is obtained from the first matrix by the shown sub-
stitutions. By keeping in Eq. (18) only the terms with the phase fac-
tors /+ and /� compensating each other, after straightforward but
lengthy calculations, we can find that the refocused part of magne-
tization has a very simple form:

Mrefocusedð2sÞ ¼ sin2 u: ð19Þ

If g(x) is a normalized distribution function for xd, the total
echo amplitude can be calculated as

Mechoð2sÞ ¼
Z

dxgðxÞ sin2 u ¼
Z

dxgðxÞðD2=ðD2 þx2ÞÞ

� pDgð0Þ � pD=X; ð20Þ

where X is the width of the distribution g(x), which models the
dipolar line width in our case. When deriving the approximate re-
sult in Eq. (20) we assumed that D �X. The echo amplitude in
Eq. (20) is given as a fraction of the equilibrium magnetization, or
x-magnetization immediately after the excitation by hard p/2-
pulse.

The above calculations for the three-level system suggest a
more general interpretation of the echo as resulting from partial
reversal of the dynamic evolution. The echo at t = 2s originates
from the terms (matrix elements) with compensated phase factors
/± = exp(±iks), where ±k are eigenvalues of the Hamiltonian
(another eigenvalue is zero in our three-level model). Generally,
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the phase factors will be exp(±ikijs), where kij = ki � kj. After the
refocusing pulse at t = s, matrix elements of SX which evolved as
exp(+ikijs) acquire fractions of matrix elements with phase factors
exp(�ikijs), which evolved ‘‘backward’’ in time. Subsequent evolu-
tion during time s compensates the phase factors of these fractions
and leads to a partial echo.

3.2. The echo decay

A simple three-level model, used to estimate the echo ampli-
tude does not contain a mechanism for the echo decay. In the
absence of spin–lattice relaxation, the echo decay results from
multi-spin dynamics. (A brief discussion of the role of molecular
motions will be given later.) The origin of the very long time
scale can be viewed as follows. Both the main Hamiltonian of di-
pole–dipole interactions H and the observable SX are invariant
under pX rotation, described by the operator pX = exp(ipSX). The
eigenfunctions of H can be rearranged to become also eigenfunc-
tions of pX and classified according to their ‘‘pX-parity’’. Each of
the new functions is a linear combination of two eigenfunctions
with the same eigenvalue of H and opposite signs of the mag-
netic quantum number m. SX has no matrix elements between
the functions of different parity and, in the absence of the sym-
metry-breaking perturbation D, its evolution happens indepen-
dently in the two subspaces of eigenfunctions of H. Total
dynamics can be viewed as happening in two fast subsystems
with the Hamiltonian H, coupled by the weak interaction D. Evo-
lution by D leads to a complete mixing and disappearance of any
transverse signals. Therefore, we expect that |D|�1 may be the
longest time scale in our system, and the decrement of the echo
decay can be estimated as |D|. Such an estimate is not very far
from experimental echo decay rates in static solids with infinite
network of dipolar couplings. The echo decay rate also deter-
mines the limiting line width, which can be achieved by soft
excitation in a two-pulse experiment: soft excitation pulse, fol-
lowed by hard refocusing p-pulse. It is interesting that for unre-
solved chemical shifts, when their differences are averaged by
fast flip-flops, the width of the chemical shift distribution can
be estimated from both the echo amplitude and the echo decay
rate.

3.3. The echo shape

At this moment, very little is known about the echo width and
shape, even though they are important characteristics for practical
applications. As an example, the inverse of the echo width deter-
mines the range of frequencies where a selective pulse can excite
sharp response signals. The height of the response spectrum (i.e.
sensitivity) is proportional to the echo width. The three-level mod-
el described above would predict the echo width about |D|�1,
which is very different from experimental observations. The exper-
imental echo widths are much shorter than that. The reason is that
the actual structure of the energy levels is more complex. Even
though the echo is contributed by pairs of levels with the energy
separations about |D| for Dm = 0, the transitions with Dm = ±1
are not limited to a transition to the state with zero energy. At
the same time, since only a small fraction of states participate in
the echo formation, and their distribution of energies can be
narrower, the echo width may be considerably longer than the
conventional FID signal. As an example, in adamantane the echo
width is about ten times longer than the free-induction decay sig-
nal [4]. Sometimes, like in liquid crystal 5CB (4-Cyano-40-pentylbi-
phenyl), the echo width is the same as the decay time of the
conventional FID signal. In general, experimentally observed echo
shape can be asymmetric, so that the ‘‘forward’’ and ‘‘backward’’
Fourier transforms of its halves produce different spectra. In this
respect, the echo is very different from the conventional echo in
inhomogeneous systems, where the echo shape reproduces the
FID shape. It is also an indication that the density matrix at the
center of the echo significantly differs from SX.

3.4. Molecular motions

Sharp response signals and long-lived echoes are also observed
in many soft solids with internal molecular motions and even in
viscous liquids. As an example, the echo is observed in soft poly-
mers with non-equivalent protons. In NMR, the effect of molecular
motions is usually calculated by using a semi-classical description,
when the parameters of the spin Hamiltonian are modulated by
random molecular motions:

HðtÞ ¼ HdðtÞ þ DðtÞ: ð21Þ

In the presence of slow molecular motions, with correlation
times sc � |Hd|�1, one would expect that all spin correlations are
destroyed at times longer than sc. However, there are experimental
indications that the echo life time can be much longer than sc. A
possible explanation can come from fully quantum description of
molecular motions [8] using the time-independent total
Hamiltonian

H ¼ ðHd þ FÞ þ D; ð22Þ

where F is the Hamiltonian of the lattice. When formulated this
way, the problem looks very similar to the one we discussed above.
The refocusing pX pulse does not affect the main Hamiltonian
(Hd + F) but changes the sign of D. Whether or not the echo may
reveal deterministic dynamics of seemingly random molecular
motions is yet to be found.

4. Conclusion

We discussed an unusual type of long-lived NMR echo, which
can be excited in solids with homogeneously broadened dipolar
spectra by a simple two-pulse Hahn sequence (p/2)Y � s � pX.
The echo is formed when there are nuclei with small difference
of resonance frequencies (chemical shifts) directly coupled by
stronger dipole–dipole interactions. The relative echo amplitude
can be estimated as pD/X, where X is the width of the conven-
tional spectrum and D is the difference of chemical shifts. The echo
decay rate is on the order of D. Replacement of the first (p/2)Y

pulse, or both the excitation and refocusing hard pulses, by soft
pulses allows producing response signals of variable duration
and intensity. This capability will be valuable in MRI applications.
Development of spectroscopic applications would probably require
a more detail study of the echo mechanism.
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